Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18214, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880275

RESUMO

The most important uses of old fabrics include clothing, mummification, and bookbinding. However, because they are predominantly constructed of natural materials, they are particularly susceptible to physical and chemical deterioration brought on by fungi. The treatments that are typically used to preserve old textiles focus on the use of synthetic fungicides, which have the potential to be dangerous for both human health and the environment. Essential oils (EOs), which are safe for the environment and have no negative effects on human health, have been widely advocated as an alternative to conventional antifungals. Four natural fabrics-linen, cotton, wool, and silk-were utilized in the current work. The extracted EO from leaves of river red gum (Eucalyptus camaldulensis Dehnh.) were prepared at 125, 250, and 500 µL/L. Aspergillus flavus, Fusarium culmorum and Aspergillus niger were inoculated separately into the treated four fabrics with the EO at concentrations of 125, 250, and 500 µL/L or the main compounds (spathulenol and eucalyptol) at the concentrations of 6, 12, 25, and 50 µL/L and were then compared to the un-treated samples. GC-MS was used to analyze the EO chemical composition, while visual observations and scanning electron microscopic (SEM) were used to study the fungal growth inhibition. Spathulenol (26.56%), eucalyptol (14.91%), and p-cymene (12.40%) were the principal chemical components found in E. camaldulensis EO by GC-MS. Spathulenol molecule displayed the highest electrostatic potential (ESP) compared with the other primary compound, as calculated by quantum mechanics. In the untreated textile samples, SEM analysis revealed substantial proliferation of hyphae from A. flavus, F. culmorum, and A. niger. The fungal growth was completely inhibited at a concentration of 500 µL/L from the EO. Both eucalyptol and spathulenol completely inhibited the formation of the fungal spores at a concentration of 50 µL/L, although eucalyptol was more effective than spathulenol across the board for all four textiles. The results support E. camaldulensis EO functionalized textiles as an effective active antifungal agent.


Assuntos
Óleos Voláteis , Animais , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antifúngicos/farmacologia , Antifúngicos/química , Eucaliptol , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana
2.
Polymers (Basel) ; 13(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34685242

RESUMO

The accelerated ageing of wood in terms of heating or iron rusting has a potential effect on the physio-mechanical, chemical and biological properties of wood. The effects of accelerated ageing on the mechanical, physical and fungal activity properties of some wood materials (Schinus terebinthifolius, Erythrina humeana, Tectona grandis, Pinus rigida and Juglans nigra) were studied after several cycles of heating and iron rusting. The fungal activity was assayed against the growth of Aspergillus terreus, Aspergillus niger, Fusarium culmorum and Stemphylium solani. In addition, the mechanical and optical properties of paper sheets produced from those wood pulps by means of Kraft cooking were evaluated. The mechanical and chemical properties of the studied wood species were affected significantly (p < 0.05) by the accelerated ageing, compared to control woods. With Fourier transform infrared (FTIR) spectroscopy, we detected an increase in the intensity of the spectra of the functional groups of cellulose in the heated samples, which indicates an increase in cellulose content and decrease in lignin content, compared to other chemical compounds. For pulp properties, woods treated by heating showed a decrease in the pulp yield. The highest significant values of tensile strength were observed in pulp paper produced from untreated, heated and iron-rusted P. rigida wood and they were 69.66, 65.66 and 68.33 N·m/g, respectively; we calculated the tear resistance from pulp paper of untreated P. rigida (8.68 mN·m2/g) and T. grandis (7.83 mN·m2/g) and rusted P. rigida (7.56 mN·m2/g) wood; we obtained the values of the burst strength of the pulp paper of untreated woods of P. rigida (8.19 kPa·m2/g) and T. grandis (7.49 kPa·m2/g), as well as the fold number of the pulp paper of untreated, heated and rusted woods from P. rigida, with values of 195.66, 186.33 and 185.66, respectively. After 14 days from the incubation, no fungal inhibition zones were observed. Accelerated ageing (heated or iron-rusted) produced significant effects on the mechanical and chemical properties of the studied wood species and affected the properties of the produced pulp paper.

3.
Materials (Basel) ; 13(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178451

RESUMO

In the pulp and paper industry, several studies have been done to improve and enhance the properties of the mechanical, optical, and antimicrobial activities of pulp produced with different additives. In the present study, pulp of wood branches (WBs) from Eucalyptus camaldulensis Dehnh. and Meryta sinclairii (Hook.f.) Seem. was treated with n-hexane oily extracts (HeOE) from Melia azedarach L. fruits, Magnolia grandiflora L. leaves, and Sinapis alba L. seeds as additives at concentrations of 1%, 3%, and 5% based on oven-dry pulp weight. Measured mechanical properties were higher in paper sheets made from E. camaldulensis than M. sinclairii WB pulp. The highest tensile index values were observed with E. camaldulensis WB pulp treated with 5% HeOEs of S. alba (33.90 N·m/g) and M. grandiflora (33.76 N·m/g) compared to control (32.10 N·m/g); the highest tear index with 5% HeOE of S. alba (4.11 mN·m2/g) compared to control (3.32 mN·m2/g); and the highest burst index with 5% HeOE of S. alba (4.11 kPa·m2/g) compared to control (3.08 kPa·m2/g). The highest double-fold number value (9) was observed with E. camaldulensis WB pulp treated with 5% HeOEs of S. alba, M. azedarach, and M. grandiflora but with no significant difference compared to control treatment (8.33) or other HeOE treatments with E. camaldulensis WB pulp. Scanning electron microscope (SEM) examination showed clear inhibition of the growth of Aspergillus terreus with WB pulp paper discs of E. camaldulensis and M. sinclairii treated with HeOEs of M. azedarach, S. alba, and M. grandiflora at 3% and 5% compared to control treatment, while HeOEs at 5% concentration showed no growth of A. niger and A. terreus. The present findings establish that the HeOEs from M. azedarach, S. alba, and M. grandiflora at 3% and 5% are novel natural products that can be used as alternatives to improve the properties and antifungal activity of WB pulp produced from E. camaldulensis and M. sinclairii.

4.
Materials (Basel) ; 13(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31940977

RESUMO

In the present study, novel mixed additives of Chitosan or Paraloid B-72 combined with nanoparticles (NPs) of Ag, ZnO, or cellulose (NCL) were examined for their effects on the mechanical, optical, and fungal inhibition properties of the papersheets produced. The highest tensile, tear, and burst indices of the papersheets were observed for flax pulp treated with additives of Paraloid B-72 + ZnO NP (1%), Chitosan + ZnO NP (3%), and Chitosan + NCL (3%) at levels of 59.93 N·m/g, 18.45 mN·m2/g, and 6.47 kPa·m2/g, respectively. Chitosan + ZnO NP (1%) added to flax pulp showed the highest fungal mycelial inhibition (FMI) (1.85%) against Aspergillus flavus. Chitosan + Ag NP (1%) exhibited the highest FMI percentage (11.48%) when added to pulp against A. terreus. Pulp treated with Paraloid B-72 + Ag NP (1%) exhibited the highest activity against Stemphylium solani with an FMI value of 3.7%. The results indicate that the technological properties of the papersheets were enhanced with the addition of novel mixtures to the pulp.

5.
Materials (Basel) ; 12(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791444

RESUMO

In the present work, sheets of Papyrus (Cyperus papyrus L.), manufactured by lamination from strips pre-treated with different treatments, were evaluated for their technological and fungal infestation properties (Aspergillus flavus AFl375, A. niger Ani245 and Colletotrichum gloeosporioides Cgl311). The results showed that the highest values of tensile strength, tear strength, burst index and double-fold number were observed in papyrus sheets produced from strips treated with nano-cellulose (0.25%), dimethyl sulfoxide (DMSO 10%), Tylose (0.25%) and nano-cellulose (0.5%), with values of 98.90 N·m/g, 2343.67 mN·m²/g, 1162 kpa·m²/g and 8.33, respectively. The percentage of brightness ranged from 49.7% (strips treated with KOH 2% + 100 mL NaClO) to 9.6% (strips treated with Eucalyptus camaldulensis bark extract 2%), while the percentage of darkness ranged from 99.86% (strips treated with Salix babylonica leaf extract 2% or E. camaldulensis bark extract 0.5%) to 67.26% (strips treated with NaOH (2%) + 100 mL NaClO). From the SEM examination, sheets produced from treated strips with extracts from P. rigida and E. camaldulensis or S. babylonica showed no growths of A. flavus and C. gloeosporioides. Additionally, other pre-treatments, such as Nano-cellulose+Tylose 0.5% (1:1 v/v) and Tylose 0.5%, were also found to have no growth of A. niger. In conclusion, strips pre-treated with nanomaterials and extracts were enhanced in terms of the technological and antifungal properties of produced Papyrus sheets, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...